Lógico, Dios existe y las matemáticas lo demuestran

Kurt Gödel , un matemático, lógico y filósofo que nació en 1906 en el Imperio austro húngaro, y que falleció en 1978 en Princeton, Estados Unidos, es considerado uno de los más importantes lógicos de todos los tiempos, debido al impacto de su trabajo en el pensamiento científico y filosófico del siglo XX. Intentando emplear la lógica y la teoría de conjuntos para comprender los fundamentos de la matemática, Gödel se haría célebre gracias a sus dos teoremas de la incompletitud, (publicados en 1931 a los 25 años de edad, un año después de finalizar su doctorado en la Universidad de Viena, en los cuales demostró que en cualquier sistema lógico basado en axiomas y reglas de inferencia, existen enunciados cuya verdad o falsedad no vamos a poder decidir, basándonos en la propia lógica matemática del sistema).

 

La demostración ontológica de Gödel

Durante sus años en el IEA (Instituto de Estudios Avanzados) de la Universidad de Princeton, los intereses de Kurt Gödel se tornaron hacia la filosofía y la física. Estudió las obras de Gottfried Leibniz, Immanuel Kant y Edmund Husserl, y a principios de los años 70’ distribuyó entre sus colegas una prueba en la cual mediante argumentaciones lógico-matemáticas probó la existencia de Dios o un ser superior, basada en la argumentación ontológica previa de San Anselmo de Canterbury y en los trabajos del mismo Leibnitz , la cual se conoce ahora como la demostración ontológica de Gödel.

La demostración, que por cierto no es de fácil comprensión para los no iniciados, es la siguiente:

-Axioma 1. (Dicotomía) Una propiedad es positiva si, y sólo si, su negación es negativa.
-Axioma 2. (Cierre) Una propiedad es positiva si contiene necesariamente una propiedad positiva.
-Teorema 1. Una propiedad positiva es lógicamente consistente (por ejemplo, existe algún caso particular).
-Definición. Algo es semejante-a-Dios si, y solamente si, posee todas las propiedades positivas.
-Axioma 3. Ser semejante-a-Dios es una propiedad positiva.
-Axioma 4. Ser una propiedad positiva (lógica, por consiguiente) es necesaria.
-Definición. Una propiedad P es la esencia de x si, y sólo si, x contiene a P y P es necesariamente mínima.
-Teorema 2. Si x es semejante-a-Dios, entonces ser semejante-a-Dios es la esencia de x.
-Definición. NE(x): x existe necesariamente si tiene una propiedad esencial.
-Axioma 5. Ser NE es ser semejante-a-Dios.
-Teorema 3. Existe necesariamente alguna x tal que x es semejante-a-Dios.
Resultado: Dios existe.

La prueba de Gödel utilizó la lógica modal (que distingue entre verdades necesarias, la que es verdadera en todos los mundos posibles, y las verdades contingentes, que es cierta en nuestro mundo, pero puede ser falsa en otro) y empleó en la definición de Dios una cuantificación explícita sobre sus propiedades, es decir, dado que la existencia necesaria es positiva, se concluye: ser como Dios es positivo. Además, la semejanza con Dios es una esencia de Dios, porque implica todas las propiedades positivas, y cualquier propiedad no positiva es la negación de alguna propiedad positiva, por lo tanto Dios no puede tener ninguna propiedad no positiva. Como cualquier objeto semejante a Dios es necesariamente existente, entonces cualquier objeto semejante a Dios en un mundo, lo es en cualquier otro mundo, por la definición de existencia necesaria. Dado la existencia de un objeto semejante a Dios en un mundo, probado anteriormente, podemos concluir que existe un objeto semejante a Dios en cualquier otro mundo posible.

Por supuesto, la comprensión de estos axiomas u razonamientos no son de fácil comprensión para el ciudadano común, aunque lo que quería Gödel, después de morir en 1978, era dejar tras de sí una teoría basada en los principios de la lógica modal que sugería que un ser superior debe existir. Este razonamiento matemático no tenía como intención convencer de la existencia de Dios, sino demostrar que el llamado “argumento ontológico” de la existencia de Dios era válido.

Los detalles de las matemáticas involucradas en la prueba ontológica de Gödel son ciertamente complicados pero, en esencia, lo que el sabio austríaco sostenía era lo siguiente: “Dios, por definición, es lo más perfecto que puede ser pensado. Si pensáramos en Dios como inexistente, entonces no sería realmente la idea de Dios, pues tendría la imperfección de no existir. Entonces, la oración ‘Dios existe’ es necesariamente verdadera. Por lo tanto, Dios existe”.

O bien: “Por definición, Dios es aquello de lo cual nada mayor puede concebirse. Por tanto, es imposible concebir que Dios no existe, pues de lo contrario podríamos concebir algo mayor que él, a saber, un Dios que sí exista. Así pues, es inconcebible que Dios no exista; luego existe.”

Si bien el argumento de Gödel no era totalmente novedoso, sí lo era el modelo matemático que propuso para probar esta idea. Sus teoremas y axiomas, entonces, pueden expresarse como ecuaciones matemáticas que se pueden rechazar o probar. Por lo pronto, recientemente, dos científicos europeos, el alemán Christoph Benzmüller, de la Universidad Libre de Berlín, y el austriaco Bruno Woltzenlogel, de la Universidad Técnica de Viena, lograron probar informáticamente el “Teorema de Dios” desarrollado a finales del siglo pasado por el matemático austriaco Kurt Gödel, que concluía que en base a los principios de la lógica debía existir un ser superior.

Si bien los científicos demostraron, usando una mayor lógica modal y un ordenador MacBook, que la argumentación de Gödel era matemáticamente correcta, aclararon que la verdadera noticia tenía que ver con la demostración de que una tecnología superior puede ayudar a la ciencia, más que con la teoría de que Dios exista o no. “Lo que se ha logrado a través de los computadores supone un éxito del genial razonamiento de Gödel. La prueba ontológica era, más que cualquier otra cosa, un buen ejemplo de algo inaccesible en las matemáticas o de la inteligencia artificial, que se ha resuelto usando la tecnología actual. El hecho de que la formalización de estos teoremas complicados se pueda realizar con computadores no profesionales abre todo tipo de posibilidades. Por eso, es totalmente increíble que el Teorema de Gödel se pueda probar de forma automática en pocos segundos o incluso menos apretando unas teclas y usando un ordenador portátil estándar».

Los críticos del “Teorema de Dios” de Gödel, por lo pronto, esgrimen que es imposible enjuiciar una demostración tan abstracta, pues incluso muchos lógico-matemáticos no han sido capaces de explicar todos los aspectos de esta prueba, y por lo tanto es muy difícil asegurar su completa naturaleza. Otros, en tanto, afirman que los cinco axiomas de la prueba de Gödel son cuestionables. De ese modo, si los axiomas de la prueba pueden ser cuestionados, entonces las conclusiones también pueden ser cuestionadas.

 


 

Si nos detenemos un momento a pensar, las matemáticas están en todos lados, en el espacio, las galaxias, los sistemas estelares, los vegetales y todo tipo de estructuras, todas las ramas de la ciencia la utilizan, todo. Entonces es ahí, donde encontramos algo común, nos damos cuenta de que las Matemáticas son la ciencia madre de todas las ciencias, que es la esencia base. Por esto es que las matemáticas no las inventamos, las vamos descubriendo a medida que evolucionamos . De alguna forma, nos van acercando a su creador y, como no, si el autor de tal magnificencia ama esta ciencia en cual basa su creación, la cual indefectiblemente define a su autor, EÓN (DIOS).

 

Hasta la próxima

 

David (10% Nori-El)
foto-perfil-300

 

«Hay mayor realidad que nuestra mayor ficción»

Maestro Nori-El

 


Mas Información y Fuentes:

www.guioteca.com